Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486823

RESUMO

Microorganism sensing of and responding to ambient chemical gradients regulates a myriad of microbial processes that are fundamental to ecosystem function and human health and disease. The development of efficient, high-throughput screening tools for microbial chemotaxis is essential to disentangling the roles of diverse chemical compounds and concentrations that control cell nutrient uptake, chemorepulsion from toxins, and microbial pathogenesis. Here, we present a novel microfluidic multiplexed chemotaxis device (MCD) which uses serial dilution to simultaneously perform six parallel bacterial chemotaxis assays that span five orders of magnitude in chemostimulant concentration on a single chip. We first validated the dilution and gradient generation performance of the MCD, and then compared the measured chemotactic response of an established bacterial chemotaxis system (Vibrio alginolyticus) to a standard microfluidic assay. Next, the MCD's versatility was assessed by quantifying the chemotactic responses of different bacteria (Psuedoalteromonas haloplanktis, Escherichia coli) to different chemoattractants and chemorepellents. The MCD vastly accelerates the chemotactic screening process, which is critical to deciphering the complex sea of chemical stimuli underlying microbial responses.


Many microorganisms such as bacteria swim to explore their fluid habitats, which range from the human digestive system to the oceans. They can detect minute traces of food, toxins and other chemicals in their environment, and ­ through a process called chemotaxis ­ respond by swimming towards or away from them. Chemical concentrations naturally decrease with distance away from their source, forming gradients. By sensing these chemical gradients, and adjusting their swimming direction accordingly, cells can locate nutrients and other resources in harsh environments as well as avoid toxins and potential predators. Over the past 20 years, laboratory devices that manipulate minute volumes of fluid ­ known as microfluidics devices ­ have been indispensable for studying chemotaxis. They enable researchers to generate gradients of chemicals in carefully designed networks of microscopic channels, controlling the conditions that swimming cells are exposed to and mimicking their natural habitats. However, large-scale studies of chemotaxis have been limited by the sheer range of chemicals that are present at different levels in natural environments. Conventional microfluidic devices often compromise between distinguishing how individual cells behave, precise control over the chemical gradient, or the ability to execute multiple assays at the same time. Here, Stehnach et al. designed a microfluidic device called the Multiplexed Chemotaxis Device. The device generates five streams of precise dilutions of a chemical and then uses these streams ­ alongside a control stream lacking the chemical ­ to measure chemotaxis in six different conditions at the same time. The device was tested using a well-studied bacterium, Vibrio alginolyticus, which is commonly found in marine environments. The device reliably examined the chemotaxis response of the population to various chemicals, was able to carry out multiple assays more rapidly than conventional devices, and can be easily applied to study the response of individual bacteria under the same conditions. The Multiplexed Chemotaxis Device is relatively easy to manufacture using standard methods and therefore has the potential to be used for large-scale chemotaxis studies. In the future, it may be useful for screening new drugs to treat bacterial infections and to help identify food sources for communities of microbes living in marine environments.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Quimiotaxia/fisiologia , Ecossistema , Fatores Quimiotáticos , Escherichia coli/fisiologia
2.
ISME Commun ; 2(1): 94, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938263

RESUMO

The fate of oceanic carbon and nutrients depends on interactions between viruses, prokaryotes, and unicellular eukaryotes (protists) in a highly interconnected planktonic food web. To date, few controlled mechanistic studies of these interactions exist, and where they do, they are largely pairwise, focusing either on viral infection (i.e., virocells) or protist predation. Here we studied population-level responses of Synechococcus cyanobacterial virocells (i.e., cyanovirocells) to the protist Oxyrrhis marina using transcriptomics, endo- and exo-metabolomics, photosynthetic efficiency measurements, and microscopy. Protist presence had no measurable impact on Synechococcus transcripts or endometabolites. The cyanovirocells alone had a smaller intracellular transcriptional and metabolic response than cyanovirocells co-cultured with protists, displaying known patterns of virus-mediated metabolic reprogramming while releasing diverse exometabolites during infection. When protists were added, several exometabolites disappeared, suggesting microbial consumption. In addition, the intracellular cyanovirocell impact was largest, with 4.5- and 10-fold more host transcripts and endometabolites, respectively, responding to protists, especially those involved in resource and energy production. Physiologically, photosynthetic efficiency also increased, and together with the transcriptomics and metabolomics findings suggest that cyanovirocell metabolic demand is highest when protists are present. These data illustrate cyanovirocell responses to protist presence that are not yet considered when linking microbial physiology to global-scale biogeochemical processes.

4.
Environ Microbiol ; 19(10): 3909-3919, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28464391

RESUMO

Coral reefs are in decline worldwide. Much of this decline is attributable to mass coral bleaching events and disease outbreaks, both of which are linked to anthropogenic climate change. Despite increased research effort, much remains unknown about these phenomena, especially the causative agents of many coral diseases. In particular, coral-associated viruses have received little attention, and their potential roles in coral diseases are largely unknown. Previous microscopy studies have produced evidence of viral infections in Symbiodinium, the endosymbiotic algae critical for coral survival, and more recently molecular evidence of Symbiodinium-infecting viruses has emerged from metagenomic studies of corals. Here, we took an exploratory whole-transcriptome approach to virus gene discovery in three different Symbiodinium cultures. An array of virus-like genes was found in each of the transcriptomes, with the majority apparently belonging to the nucleocytoplasmic large DNA viruses. Upregulation of virus-like gene expression following stress experiments indicated that Symbiodinium cells may host latent or persistent viral infections that are induced via stress. This was supported by analysis of host gene expression, which showed changes consistent with viral infection after exposure to stress. If these results can be replicated in Symbiodinium cells in hospite, they could help to explain the breakdown of the coral-Symbiodinium symbiosis, and possibly some of the numerous coral diseases that have yet to be assigned a causative agent.


Assuntos
Vírus de DNA/genética , Dinoflagellida/genética , Dinoflagellida/virologia , Transcriptoma/genética , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...